/* ------------------------------------------------------------------ CG scale (c) 2019 by M. Lehmann ------------------------------------------------------------------ */ #define CGSCALE_VERSION "1.1.12b" /* ****************************************************************** history: V1.1 02.02.19 Supports ESP8266, webpage integrated, STA and AP mode V1.0 12.01.19 first release ****************************************************************** Software License Agreement (BSD License) Copyright (c) 2019, Michael Lehmann All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Required libraries, can be installed from the library manager #include // library for the HX711 24-bit ADC for weight scales (https://github.com/olkal/HX711_ADC) #include // Universal 8bit Graphics Library (https://github.com/olikraus/u8g2/) // built-in libraries #include #include // libraries for ESP8266 #if defined(ESP8266) #include #include #include #include #include #include #include #endif // load settings #if defined(__AVR__) #include "settings_AVR.h" #elif defined(ESP8266) #include "settings_ESP8266.h" #endif // HX711 constructor (dout pin, sck pint): HX711_ADC LoadCell_1(PIN_LOADCELL1_DOUT, PIN_LOADCELL1_PD_SCK); HX711_ADC LoadCell_2(PIN_LOADCELL2_DOUT, PIN_LOADCELL2_PD_SCK); HX711_ADC LoadCell_3(PIN_LOADCELL3_DOUT, PIN_LOADCELL3_PD_SCK); // webserver constructor #if defined(ESP8266) ESP8266WebServer server(80); IPAddress apIP(ip[0], ip[1], ip[2], ip[3]); File fsUploadFile; // a File object to temporarily store the received file #endif // serial menu enum { MENU_HOME, MENU_LOADCELLS, MENU_DISTANCE_X1, MENU_DISTANCE_X2, MENU_DISTANCE_X3, MENU_REF_WEIGHT, MENU_REF_CG, MENU_AUTO_CALIBRATE, MENU_LOADCELL1_CALIBRATION_FACTOR, MENU_LOADCELL2_CALIBRATION_FACTOR, MENU_LOADCELL3_CALIBRATION_FACTOR, MENU_RESISTOR_R1, MENU_RESISTOR_R2, MENU_BATTERY_MEASUREMENT, MENU_SHOW_ACTUAL, #if defined(ESP8266) MENU_WIFI_INFO, #endif MENU_RESET_DEFAULT }; // EEprom parameter addresses enum { P_NUMBER_LOADCELLS = 1, P_DISTANCE_X1 = 2, P_DISTANCE_X2 = P_DISTANCE_X1 + sizeof(float), P_DISTANCE_X3 = P_DISTANCE_X2 + sizeof(float), P_LOADCELL1_CALIBRATION_FACTOR = P_DISTANCE_X3 + sizeof(float), P_LOADCELL2_CALIBRATION_FACTOR = P_LOADCELL1_CALIBRATION_FACTOR + sizeof(float), P_LOADCELL3_CALIBRATION_FACTOR = P_LOADCELL2_CALIBRATION_FACTOR + sizeof(float), P_ENABLE_BATVOLT = P_LOADCELL3_CALIBRATION_FACTOR + sizeof(float), P_REF_WEIGHT = P_ENABLE_BATVOLT + sizeof(float), P_REF_CG = P_REF_WEIGHT + sizeof(float), P_RESISTOR_R1 = P_REF_CG + sizeof(float), P_RESISTOR_R2 = P_RESISTOR_R1 + sizeof(float), #if defined(__AVR__) EEPROM_SIZE = P_RESISTOR_R2 + sizeof(float) #elif defined(ESP8266) P_SSID_STA = P_RESISTOR_R2 + sizeof(float), P_PASSWORD_STA = P_SSID_STA + MAX_SSID_PW_LENGHT + 1, P_SSID_AP = P_PASSWORD_STA + MAX_SSID_PW_LENGHT + 1, P_PASSWORD_AP = P_SSID_AP + MAX_SSID_PW_LENGHT + 1, P_MODELNAME = P_PASSWORD_AP + MAX_SSID_PW_LENGHT + 1, EEPROM_SIZE = P_MODELNAME + MAX_MODELNAME_LENGHT + 1 #endif }; // battery image 12x6 static const unsigned char batteryImage[] U8X8_PROGMEM = { 0xfc, 0xff, 0x07, 0xf8, 0x01, 0xf8, 0x01, 0xf8, 0x07, 0xf8, 0xfc, 0xff }; // weight image 18x18 static const unsigned char weightImage[] U8X8_PROGMEM = { 0x00, 0x00, 0xfc, 0x00, 0x03, 0xfc, 0x80, 0x04, 0xfc, 0x80, 0x04, 0xfc, 0x80, 0x07, 0xfc, 0xf8, 0x7f, 0xfc, 0x08, 0x40, 0xfc, 0x08, 0x40, 0xfc, 0x08, 0x47, 0xfc, 0x84, 0x84, 0xfc, 0x84, 0x84, 0xfc, 0x04, 0x87, 0xfc, 0x04, 0x84, 0xfc, 0x02, 0x03, 0xfd, 0x02, 0x00, 0xfd, 0x02, 0x00, 0xfd, 0xfe, 0xff, 0xfd, 0x00, 0x00, 0xfc }; // CG image 18x18 static const unsigned char CGImage[] U8X8_PROGMEM = { 0x00, 0x02, 0xfc, 0xc0, 0x1f, 0xfc, 0x30, 0x7e, 0xfc, 0x08, 0xfe, 0xfc, 0x04, 0xfe, 0xfc, 0x04, 0xfe, 0xfd, 0x02, 0xfe, 0xfd, 0x02, 0xfe, 0xfd, 0x02, 0xfe, 0xff, 0xff, 0x01, 0xfd, 0xfe, 0x01, 0xfd, 0xfe, 0x01, 0xfd, 0xfe, 0x81, 0xfc, 0xfc, 0x81, 0xfc, 0xfc, 0x41, 0xfc, 0xf8, 0x31, 0xfc, 0xe0, 0x0f, 0xfc, 0x00, 0x01, 0xfc }; // CG transverse axis image 18x18 static const unsigned char CGtransImage[] U8X8_PROGMEM = { 0x00, 0x00, 0xfc, 0x00, 0x00, 0xfc, 0x00, 0x00, 0xfc, 0x04, 0x70, 0xfc, 0x04, 0x90, 0xfc, 0x04, 0x90, 0xfc, 0x04, 0x70, 0xfc, 0x04, 0x50, 0xfc, 0x04, 0x90, 0xfc, 0x3c, 0x90, 0xfc, 0x00, 0x00, 0xfc, 0x00, 0x00, 0xfc, 0x08, 0x40, 0xfc, 0x04, 0x80, 0xfc, 0x7e, 0xf8, 0xfd, 0x04, 0x80, 0xfc, 0x08, 0x40, 0xfc, 0x00, 0x00, 0xfc }; // set default text static const String newValueText = "Set new value:"; // load default values uint8_t nLoadcells = NUMBER_LOADCELLS; float distanceX1 = DISTANCE_X1; float distanceX2 = DISTANCE_X2; float distanceX3 = DISTANCE_X3; float calFactorLoadcell1 = LOADCELL1_CALIBRATION_FACTOR; float calFactorLoadcell2 = LOADCELL2_CALIBRATION_FACTOR; float calFactorLoadcell3 = LOADCELL3_CALIBRATION_FACTOR; float resistorR1 = RESISTOR_R1; float resistorR2 = RESISTOR_R2; bool enableBatVolt = ENABLE_VOLTAGE; float refWeight = REF_WEIGHT; float refCG = REF_CG; #if defined(ESP8266) char ssid_STA[MAX_SSID_PW_LENGHT + 1] = SSID_STA; char password_STA[MAX_SSID_PW_LENGHT + 1] = PASSWORD_STA; char ssid_AP[MAX_SSID_PW_LENGHT + 1] = SSID_AP; char password_AP[MAX_SSID_PW_LENGHT + 1] = PASSWORD_AP; #endif // declare variables float weightLoadCell1 = 0; float weightLoadCell2 = 0; float weightLoadCell3 = 0; float lastWeightLoadCell1 = 0; float lastWeightLoadCell2 = 0; float lastWeightLoadCell3 = 0; float weightTotal = 0; float CG_length = 0; float CG_trans = 0; float batVolt = 0; unsigned long lastTimeMenu = 0; unsigned long lastTimeLoadcell = 0; bool updateMenu = true; int menuPage = 0; String errMsg[5] = ""; int errMsgCnt = 0; #if defined(ESP8266) String wifiMsg = ""; String updateMsg = ""; bool wifiSTAmode = true; char curModelName[MAX_MODELNAME_LENGHT + 1] = ""; #endif // Restart CPU #if defined(__AVR__) void(* resetCPU) (void) = 0; #elif defined(ESP8266) void resetCPU() {} #endif // save calibration factor void saveCalFactor1() { LoadCell_1.setCalFactor(calFactorLoadcell1); EEPROM.put(P_LOADCELL1_CALIBRATION_FACTOR, calFactorLoadcell1); #if defined(ESP8266) EEPROM.commit(); #endif } void saveCalFactor2() { LoadCell_2.setCalFactor(calFactorLoadcell2); EEPROM.put(P_LOADCELL2_CALIBRATION_FACTOR, calFactorLoadcell2); #if defined(ESP8266) EEPROM.commit(); #endif } void saveCalFactor3() { LoadCell_3.setCalFactor(calFactorLoadcell3); EEPROM.put(P_LOADCELL3_CALIBRATION_FACTOR, calFactorLoadcell3); #if defined(ESP8266) EEPROM.commit(); #endif } // run auto calibration bool runAutoCalibrate() { Serial.print(F("\nAutocalibration is running")); for (int i = 0; i <= 20; i++) { Serial.print(F(".")); delay(100); } // calculate weight float toWeightLoadCell2 = ((refCG - distanceX1) * refWeight) / distanceX2; float toWeightLoadCell1 = refWeight - toWeightLoadCell2; float toWeightLoadCell3 = 0; if (nLoadcells == 3) { toWeightLoadCell1 = toWeightLoadCell1 / 2; toWeightLoadCell3 = toWeightLoadCell1; } // calculate calibration factors calFactorLoadcell1 = calFactorLoadcell1 / (toWeightLoadCell1 / weightLoadCell1); calFactorLoadcell2 = calFactorLoadcell2 / (toWeightLoadCell2 / weightLoadCell2); if (nLoadcells == 3) { calFactorLoadcell3 = calFactorLoadcell3 / (toWeightLoadCell3 / weightLoadCell3); } saveCalFactor1(); saveCalFactor2(); saveCalFactor3(); // finish Serial.println(F("done")); } // check if a loadcell has error bool getLoadcellError() { bool err = false; if (LoadCell_1.getTareTimeoutFlag()) { errMsg[++errMsgCnt] = "ERROR: Timeout TARE Lc1\n"; err = true; } if (LoadCell_2.getTareTimeoutFlag()) { errMsg[++errMsgCnt] = "ERROR: Timeout TARE Lc2\n"; err = true; } if (nLoadcells == 3) { if (LoadCell_3.getTareTimeoutFlag()) { errMsg[++errMsgCnt] = "ERROR: Timeout TARE Lc3\n"; err = true; } } return err; } // print update progress screen void printUpdateProgress(unsigned int progress, unsigned int total) { oledDisplay.firstPage(); do { oledDisplay.setFont(u8g2_font_helvR08_tr); oledDisplay.setCursor(0, 12); oledDisplay.print(updateMsg); oledDisplay.setFont(u8g2_font_5x7_tr); oledDisplay.setCursor(107, 35); oledDisplay.printf("%u%%\r", (progress / (total / 100))); oledDisplay.drawFrame(0,40,128,10); oledDisplay.drawBox(0,40,(progress / (total / 128)),10); } while ( oledDisplay.nextPage() ); } void setup() { // init serial Serial.begin(9600); #if defined(ESP8266) // init filesystem SPIFFS.begin(); EEPROM.begin(EEPROM_SIZE); #endif // read settings from eeprom if (EEPROM.read(P_NUMBER_LOADCELLS) != 0xFF) { nLoadcells = EEPROM.read(P_NUMBER_LOADCELLS); } if (EEPROM.read(P_DISTANCE_X1) != 0xFF) { EEPROM.get(P_DISTANCE_X1, distanceX1); } if (EEPROM.read(P_DISTANCE_X2) != 0xFF) { EEPROM.get(P_DISTANCE_X2, distanceX2); } if (EEPROM.read(P_DISTANCE_X3) != 0xFF) { EEPROM.get(P_DISTANCE_X3, distanceX3); } if (EEPROM.read(P_LOADCELL1_CALIBRATION_FACTOR) != 0xFF) { EEPROM.get(P_LOADCELL1_CALIBRATION_FACTOR, calFactorLoadcell1); } if (EEPROM.read(P_LOADCELL2_CALIBRATION_FACTOR) != 0xFF) { EEPROM.get(P_LOADCELL2_CALIBRATION_FACTOR, calFactorLoadcell2); } if (EEPROM.read(P_LOADCELL3_CALIBRATION_FACTOR) != 0xFF) { EEPROM.get(P_LOADCELL3_CALIBRATION_FACTOR, calFactorLoadcell3); } if (EEPROM.read(P_ENABLE_BATVOLT) != 0xFF) { EEPROM.get(P_ENABLE_BATVOLT, enableBatVolt); } if (EEPROM.read(P_REF_WEIGHT) != 0xFF) { EEPROM.get(P_REF_WEIGHT, refWeight); } if (EEPROM.read(P_REF_CG) != 0xFF) { EEPROM.get(P_REF_CG, refCG); } if (EEPROM.read(P_RESISTOR_R1) != 0xFF) { EEPROM.get(P_RESISTOR_R1, resistorR1); } if (EEPROM.read(P_RESISTOR_R2) != 0xFF) { EEPROM.get(P_RESISTOR_R2, resistorR2); } #if defined(ESP8266) if (EEPROM.read(P_SSID_STA) != 0xFF) { EEPROM.get(P_SSID_STA, ssid_STA); } if (EEPROM.read(P_PASSWORD_STA) != 0xFF) { EEPROM.get(P_PASSWORD_STA, password_STA); } if (EEPROM.read(P_SSID_AP) != 0xFF) { EEPROM.get(P_SSID_AP, ssid_AP); } if (EEPROM.read(P_PASSWORD_AP) != 0xFF) { EEPROM.get(P_PASSWORD_AP, password_AP); } if (EEPROM.read(P_MODELNAME) != 0xFF) { EEPROM.get(P_MODELNAME, curModelName); } // load current model if (!openModelJson(curModelName)) { curModelName[0] = '\0'; } #endif // init OLED display oledDisplay.begin(); oledDisplay.firstPage(); do { oledDisplay.drawXBMP(20, 12, 18, 18, CGImage); oledDisplay.setFont(u8g2_font_helvR12_tr); oledDisplay.setCursor(45, 28); oledDisplay.print(F("CG scale")); oledDisplay.setFont(u8g2_font_5x7_tr); oledDisplay.setCursor(35, 55); oledDisplay.print(F("Version: ")); oledDisplay.print(CGSCALE_VERSION); oledDisplay.setCursor(20, 64); oledDisplay.print(F("(c) 2019 M. Lehmann")); } while ( oledDisplay.nextPage() ); // init & tare Loadcells LoadCell_1.begin(); LoadCell_1.setCalFactor(calFactorLoadcell1); LoadCell_2.begin(); LoadCell_2.setCalFactor(calFactorLoadcell2); if (nLoadcells == 3) { LoadCell_3.begin(); LoadCell_3.setCalFactor(calFactorLoadcell3); } // stabilize scale values while (millis() < STABILISINGTIME) { LoadCell_1.update(); LoadCell_2.update(); if (nLoadcells == 3) { LoadCell_3.update(); } } LoadCell_1.tare(); LoadCell_2.tare(); if (nLoadcells == 3) { LoadCell_3.tare(); } getLoadcellError(); #if defined(ESP8266) // Start by connecting to a WiFi network WiFi.mode(WIFI_STA); WiFi.begin(ssid_STA, password_STA); wifiMsg += TimeToString(millis()); wifiMsg += " STA mode - connect with wifi: "; wifiMsg += ssid_STA; wifiMsg += "\n"; long timeoutWiFi = millis(); while (WiFi.status() != WL_CONNECTED) { delay(500); if (WiFi.status() == WL_NO_SSID_AVAIL) { wifiMsg += TimeToString(millis()); wifiMsg += " No SSID available\n"; break; } else if (WiFi.status() == WL_CONNECT_FAILED) { wifiMsg += TimeToString(millis()); wifiMsg += " Connection failed\n"; break; } else if ((millis() - timeoutWiFi) > TIMEOUT_CONNECT) { wifiMsg += TimeToString(millis()); wifiMsg += " Timeout\n"; break; } } if (WiFi.status() != WL_CONNECTED) { // if WiFi not connected, switch to access point mode wifiSTAmode = false; wifiMsg += TimeToString(millis()); wifiMsg += " AP mode - create access point: "; wifiMsg += ssid_AP; WiFi.mode(WIFI_AP); WiFi.softAPConfig(apIP, apIP, IPAddress(255, 255, 255, 0)); WiFi.softAP(ssid_AP, password_AP); wifiMsg += "\n"; wifiMsg += TimeToString(millis()); wifiMsg += " IP: "; wifiMsg += WiFi.softAPIP().toString(); } else { wifiMsg += TimeToString(millis()); wifiMsg += " Connected, IP: "; wifiMsg += WiFi.localIP().toString(); } // init mDNS String hostName = "disabled"; #if ENABLE_MDNS hostName = ssid_AP; hostName.replace(" ", ""); hostName.toLowerCase(); char hostString[32]; hostName.toCharArray(hostString, 32); MDNS.begin(hostString); hostName += ".local"; #endif wifiMsg += "\n"; wifiMsg += TimeToString(millis()); wifiMsg += " Hostname: "; wifiMsg += hostName; // print wifi status oledDisplay.firstPage(); do { oledDisplay.setFont(u8g2_font_5x7_tr); oledDisplay.setCursor(0, 14); oledDisplay.print(F("WiFi:")); oledDisplay.setCursor(0, 39); oledDisplay.print(F("Host:")); oledDisplay.setCursor(0, 64); oledDisplay.print(F("IP:")); oledDisplay.setFont(u8g2_font_helvR10_tr); oledDisplay.setCursor(28, 14); if (wifiSTAmode) { oledDisplay.print(ssid_STA); } else { oledDisplay.print(ssid_AP); } oledDisplay.setCursor(28, 39); oledDisplay.print(hostName); oledDisplay.setCursor(28, 64); if (wifiSTAmode) { oledDisplay.print(WiFi.localIP()); } else { oledDisplay.print(WiFi.softAPIP()); } } while ( oledDisplay.nextPage() ); delay(3000); // When the client requests data server.on("/getHead", getHead); server.on("/getValue", getValue); server.on("/getRawValue", getRawValue); server.on("/getParameter", getParameter); server.on("/getWiFiNetworks", getWiFiNetworks); server.on("/saveParameter", saveParameter); server.on("/autoCalibrate", autoCalibrate); server.on("/tare", runTare); server.on("/saveModel", saveModel); server.on("/openModel", openModel); server.on("/deleteModel", deleteModel); // When the client upload file server.on("/models.html", HTTP_POST, []() { server.send(200, "text/plain", ""); }, handleFileUpload); // If the client requests any URI server.onNotFound([]() { if (!handleFileRead(server.uri())) server.send(404, "text/plain", "404: Not Found"); }); // init webserver server.begin(); // init OTA (over the air update) ArduinoOTA.setHostname(ssid_AP); ArduinoOTA.setPassword(password_AP); ArduinoOTA.onStart([]() { String type; if (ArduinoOTA.getCommand() == U_FLASH) { type = "firmware"; } else { // U_SPIFFS //SPIFFS.end(); type = "SPIFFS"; } // NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end() updateMsg = "Updating " + type; }); ArduinoOTA.onEnd([]() { updateMsg = "successful.."; printUpdateProgress(100,100); }); ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { printUpdateProgress(progress,total); }); ArduinoOTA.onError([](ota_error_t error) { if (error == OTA_AUTH_ERROR) { updateMsg = "Auth Failed"; } else if (error == OTA_BEGIN_ERROR) { updateMsg = "Begin Failed"; } else if (error == OTA_CONNECT_ERROR) { updateMsg = "Connect Failed"; } else if (error == OTA_RECEIVE_ERROR) { updateMsg = "Receive Failed"; } else if (error == OTA_END_ERROR) { updateMsg = "End Failed"; } printUpdateProgress(0,100); }); ArduinoOTA.begin(); #if ENABLE_MDNS // Add service to MDNS-SD MDNS.addService("http", "tcp", 8080); #endif #endif } void loop() { #if defined(ESP8266) #if ENABLE_MDNS MDNS.update(); #endif ArduinoOTA.handle(); server.handleClient(); #endif LoadCell_1.update(); LoadCell_2.update(); if (nLoadcells == 3) { LoadCell_3.update(); } // update loadcell values if ((millis() - lastTimeLoadcell) > UPDATE_INTERVAL_LOADCELL) { lastTimeLoadcell = millis(); // get Loadcell weights weightLoadCell1 = LoadCell_1.getData(); weightLoadCell2 = LoadCell_2.getData(); if (nLoadcells == 3) { weightLoadCell3 = LoadCell_3.getData(); } // IIR filter weightLoadCell1 = weightLoadCell1 + SMOOTHING_LOADCELL1 * (lastWeightLoadCell1 - weightLoadCell1); lastWeightLoadCell1 = weightLoadCell1; weightLoadCell2 = weightLoadCell2 + SMOOTHING_LOADCELL2 * (lastWeightLoadCell2 - weightLoadCell2); lastWeightLoadCell2 = weightLoadCell2; weightLoadCell3 = weightLoadCell3 + SMOOTHING_LOADCELL3 * (lastWeightLoadCell3 - weightLoadCell3); lastWeightLoadCell3 = weightLoadCell3; } // update display and serial menu if ((millis() - lastTimeMenu) > UPDATE_INTERVAL_OLED_MENU) { lastTimeMenu = millis(); // total model weight weightTotal = weightLoadCell1 + weightLoadCell2 + weightLoadCell3; if (weightTotal < MINIMAL_TOTAL_WEIGHT && weightTotal > MINIMAL_TOTAL_WEIGHT * -1) { weightTotal = 0; } if (weightTotal > MINIMAL_CG_WEIGHT) { // CG longitudinal axis CG_length = ((weightLoadCell2 * distanceX2) / weightTotal) + distanceX1; // CG transverse axis if (nLoadcells == 3) { CG_trans = (distanceX3 / 2) - (((weightLoadCell1 + weightLoadCell2 / 2) * distanceX3) / weightTotal); } } else { CG_length = 0; CG_trans = 0; } // read battery voltage if (enableBatVolt) { batVolt = (analogRead(VOLTAGE_PIN) / 1024.0) * V_REF * ((resistorR1 + resistorR2) / resistorR2) / 1000.0; } // print to display char buff[8]; int pos_weightTotal = 7; int pos_CG_length = 28; if (nLoadcells == 2) { pos_weightTotal = 17; pos_CG_length = 45; if (!enableBatVolt) { pos_weightTotal = 12; pos_CG_length = 40; } } oledDisplay.firstPage(); do { if (errMsgCnt == 0) { // print battery if (enableBatVolt) { oledDisplay.drawXBMP(88, 1, 12, 6, batteryImage); dtostrf(batVolt, 2, 2, buff); oledDisplay.setFont(u8g2_font_5x7_tr); oledDisplay.setCursor(123 - oledDisplay.getStrWidth(buff), 7); oledDisplay.print(buff); oledDisplay.print(F("V")); } // print total weight oledDisplay.drawXBMP(2, pos_weightTotal, 18, 18, weightImage); dtostrf(weightTotal, 5, 1, buff); oledDisplay.setFont(u8g2_font_helvR12_tr); oledDisplay.setCursor(93 - oledDisplay.getStrWidth(buff), pos_weightTotal + 17); oledDisplay.print(buff); oledDisplay.print(F(" g")); // print CG longitudinal axis oledDisplay.drawXBMP(2, pos_CG_length, 18, 18, CGImage); dtostrf(CG_length, 5, 1, buff); oledDisplay.setCursor(93 - oledDisplay.getStrWidth(buff), pos_CG_length + 16); oledDisplay.print(buff); oledDisplay.print(F(" mm")); // print CG transverse axis if (nLoadcells == 3) { oledDisplay.drawXBMP(2, 47, 18, 18, CGtransImage); dtostrf(CG_trans, 5, 1, buff); oledDisplay.setCursor(93 - oledDisplay.getStrWidth(buff), 64); oledDisplay.print(buff); oledDisplay.print(F(" mm")); } } else { oledDisplay.setFont(u8g2_font_5x7_tr); for (int i = 1; i <= errMsgCnt; i++) { oledDisplay.setCursor(0, 7 * i); oledDisplay.print(errMsg[i]); } } } while ( oledDisplay.nextPage() ); // serial connection if (Serial) { if (Serial.available() > 0) { switch (menuPage) { case MENU_HOME: menuPage = Serial.parseInt(); updateMenu = true; break; case MENU_LOADCELLS: nLoadcells = Serial.parseInt(); EEPROM.put(P_NUMBER_LOADCELLS, nLoadcells); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_DISTANCE_X1: distanceX1 = Serial.parseFloat(); EEPROM.put(P_DISTANCE_X1, distanceX1); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_DISTANCE_X2: distanceX2 = Serial.parseFloat(); EEPROM.put(P_DISTANCE_X2, distanceX2); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_DISTANCE_X3: distanceX3 = Serial.parseFloat(); EEPROM.put(P_DISTANCE_X3, distanceX3); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_REF_WEIGHT: refWeight = Serial.parseFloat(); EEPROM.put(P_REF_WEIGHT, refWeight); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_REF_CG: refCG = Serial.parseFloat(); EEPROM.put(P_REF_CG, refCG); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_AUTO_CALIBRATE: if (Serial.read() == 'J') { runAutoCalibrate(); menuPage = 0; updateMenu = true; } break; case MENU_LOADCELL1_CALIBRATION_FACTOR: calFactorLoadcell1 = Serial.parseFloat(); saveCalFactor1(); menuPage = 0; updateMenu = true; break; case MENU_LOADCELL2_CALIBRATION_FACTOR: calFactorLoadcell2 = Serial.parseFloat(); saveCalFactor2(); menuPage = 0; updateMenu = true; break; case MENU_LOADCELL3_CALIBRATION_FACTOR: calFactorLoadcell3 = Serial.parseFloat(); saveCalFactor3(); menuPage = 0; updateMenu = true; break; case MENU_RESISTOR_R1: resistorR1 = Serial.parseFloat(); EEPROM.put(P_RESISTOR_R1, resistorR1); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_RESISTOR_R2: resistorR2 = Serial.parseFloat(); EEPROM.put(P_RESISTOR_R2, resistorR2); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_BATTERY_MEASUREMENT: if (Serial.read() == 'J') { enableBatVolt = true; } else { enableBatVolt = false; } EEPROM.put(P_ENABLE_BATVOLT, enableBatVolt); #if defined(ESP8266) EEPROM.commit(); #endif menuPage = 0; updateMenu = true; break; case MENU_RESET_DEFAULT: if (Serial.read() == 'J') { // reset eeprom for (int i = 0; i < EEPROM_SIZE; i++) { EEPROM.write(i, 0xFF); } Serial.end(); #if defined(ESP8266) EEPROM.commit(); // delete json model file if (SPIFFS.exists(MODEL_FILE)) { SPIFFS.remove(MODEL_FILE); } #endif resetCPU(); } menuPage = 0; updateMenu = true; break; default: Serial.readString(); menuPage = 0; updateMenu = true; break; } Serial.readString(); } if (!updateMenu) return; switch (menuPage) { case MENU_HOME: Serial.print(F("\n\n********************************************\nCG scale by M.Lehmann - V")); Serial.print(CGSCALE_VERSION); Serial.print(F("\n\n")); Serial.print(MENU_LOADCELLS); Serial.print(F(" - Set number of load cells (")); Serial.print(nLoadcells); Serial.print(F(")\n")); Serial.print(MENU_DISTANCE_X1); Serial.print(F(" - Set distance X1 (")); Serial.print(distanceX1); Serial.print(F("mm)\n")); Serial.print(MENU_DISTANCE_X2); Serial.print(F(" - Set distance X2 (")); Serial.print(distanceX2); Serial.print(F("mm)\n")); Serial.print(MENU_DISTANCE_X3); Serial.print(F(" - Set distance X3 (")); Serial.print(distanceX3); Serial.print(F("mm)\n")); Serial.print(MENU_REF_WEIGHT); Serial.print(F(" - Set reference weight (")); Serial.print(refWeight); Serial.print(F("g)\n")); Serial.print(MENU_REF_CG); Serial.print(F(" - Set reference CG (")); Serial.print(refCG); Serial.print(F("mm)\n")); Serial.print(MENU_AUTO_CALIBRATE); Serial.print(F(" - Start autocalibration\n")); Serial.print(MENU_LOADCELL1_CALIBRATION_FACTOR); Serial.print(F(" - Set calibration factor of load cell 1 (")); Serial.print(calFactorLoadcell1); Serial.print(F(")\n")); Serial.print(MENU_LOADCELL2_CALIBRATION_FACTOR); Serial.print(F(" - Set calibration factor of load cell 2 (")); Serial.print(calFactorLoadcell2); Serial.print(F(")\n")); Serial.print(MENU_LOADCELL3_CALIBRATION_FACTOR); Serial.print(F(" - Set calibration factor of load cell 3 (")); Serial.print(calFactorLoadcell3); Serial.print(F(")\n")); Serial.print(MENU_RESISTOR_R1); Serial.print(F(" - Set value of resistor R1 (")); Serial.print(resistorR1); Serial.print(F("ohm)\n")); Serial.print(MENU_RESISTOR_R2); Serial.print(F(" - Set value of resistor R2 (")); Serial.print(resistorR2); Serial.print(F("ohm)\n")); Serial.print(MENU_BATTERY_MEASUREMENT); Serial.print(F(" - Enable battery voltage measurement (")); if (enableBatVolt) { Serial.print(F("enabled)\n")); } else { Serial.print(F("disabled)\n")); } Serial.print(MENU_SHOW_ACTUAL); Serial.print(F(" - Show actual values\n")); #if defined(ESP8266) Serial.print(MENU_WIFI_INFO); Serial.print(F(" - Show WiFi network info\n")); #endif Serial.print(MENU_RESET_DEFAULT); Serial.print(F(" - Reset to factory defaults\n")); Serial.print(F("\n")); for (int i = 1; i <= errMsgCnt; i++) { Serial.print(errMsg[i]); } Serial.print(F("\nPlease choose the menu number:")); updateMenu = false; break; case MENU_LOADCELLS: Serial.print(F("\n\nNumber of load cells: ")); Serial.println(nLoadcells); Serial.print(newValueText); updateMenu = false; break; case MENU_DISTANCE_X1: Serial.print(F("\n\nDistance X1: ")); Serial.print(distanceX1); Serial.print(F("mm\n")); Serial.print(newValueText); updateMenu = false; break; case MENU_DISTANCE_X2: Serial.print(F("\n\nDistance X2: ")); Serial.print(distanceX2); Serial.print(F("mm\n")); Serial.print(newValueText); updateMenu = false; break; case MENU_DISTANCE_X3: Serial.print(F("\n\nDistance X3: ")); Serial.print(distanceX3); Serial.print(F("mm\n")); Serial.print(newValueText); updateMenu = false; break; case MENU_REF_WEIGHT: Serial.print(F("\n\nReference weight: ")); Serial.print(refWeight); Serial.print(F("g\n")); Serial.print(newValueText); updateMenu = false; break; case MENU_REF_CG: Serial.print(F("\n\nReference CG: ")); Serial.print(refCG); Serial.print(F("mm\n")); Serial.print(newValueText); updateMenu = false; break; case MENU_AUTO_CALIBRATE: Serial.print(F("\n\nPlease put the reference weight on the scale.\nStart auto calibration (J/N)?\n")); updateMenu = false; break; case MENU_LOADCELL1_CALIBRATION_FACTOR: Serial.print(F("\n\nCalibration factor of load cell 1: ")); Serial.println(calFactorLoadcell1); Serial.print(newValueText); updateMenu = false; break; case MENU_LOADCELL2_CALIBRATION_FACTOR: Serial.print(F("\n\nCalibration factor of load cell 2: ")); Serial.println(calFactorLoadcell2); Serial.print(newValueText); updateMenu = false; break; case MENU_LOADCELL3_CALIBRATION_FACTOR: Serial.print(F("\n\nCalibration factor of load cell 3: ")); Serial.println(calFactorLoadcell3); Serial.print(newValueText); updateMenu = false; break; case MENU_RESISTOR_R1: Serial.print(F("\n\nValue of resistor R1: ")); Serial.println(resistorR1); Serial.print(newValueText); updateMenu = false; break; case MENU_RESISTOR_R2: Serial.print(F("\n\nValue of resistor R2: ")); Serial.println(resistorR2); Serial.print(newValueText); updateMenu = false; break; case MENU_BATTERY_MEASUREMENT: Serial.print(F("\n\nEnable battery voltage measurement (J/N)?\n")); updateMenu = false; break; case MENU_SHOW_ACTUAL: Serial.print(F("Lc1: ")); Serial.print(weightLoadCell1); Serial.print(F("g Lc2: ")); Serial.print(weightLoadCell2); if (nLoadcells == 3) { Serial.print(F("g Lc3: ")); Serial.print(weightLoadCell3); } Serial.print(F("g Total weight: ")); Serial.print(weightTotal); Serial.print(F("g CG length: ")); Serial.print(CG_length); if (nLoadcells == 3) { Serial.print(F("mm CG trans: ")); Serial.print(CG_trans); Serial.print(F("mm")); } if (enableBatVolt) { Serial.print(F(" Battery:")); Serial.print(batVolt); Serial.print(F("V")); } Serial.println(); break; #if defined(ESP8266) case MENU_WIFI_INFO: { Serial.println("\n\n********************************************\nWiFi network information\n"); Serial.println("# Startup log:"); Serial.println(wifiMsg); Serial.println("# end of log"); if (wifiSTAmode == false) { Serial.print("\nConnected clients: "); Serial.println(WiFi.softAPgetStationNum()); } Serial.println("\nAvailable WiFi networks:"); int wifiCnt = WiFi.scanNetworks(); if (wifiCnt == 0) { Serial.println("no networks found"); } else { for (int i = 0; i < wifiCnt; ++i) { // Print SSID and RSSI for each network found Serial.print(i + 1); Serial.print(": "); Serial.print(WiFi.SSID(i)); Serial.print(" ("); Serial.print(WiFi.RSSI(i)); Serial.print("dBm) "); switch (WiFi.encryptionType(i)) { case ENC_TYPE_WEP: Serial.print("WEP"); break; case ENC_TYPE_TKIP: Serial.print("WPA"); break; case ENC_TYPE_CCMP: Serial.print("WPA2"); break; case ENC_TYPE_AUTO: Serial.print("Auto"); break; } Serial.println(""); } } } updateMenu = false; break; #endif case MENU_RESET_DEFAULT: Serial.print(F("\n\nReset to factory defaults (J/N)?\n")); updateMenu = false; break; } } else { updateMenu = true; } } } #if defined(ESP8266) // send headvalues to client void getHead() { String response = ssid_AP; response += "&"; for (int i = 1; i <= errMsgCnt; i++) { response += errMsg[i]; } response += "&"; response += CGSCALE_VERSION; server.send(200, "text/html", response); } // send values to client void getValue() { char buff[8]; String response = ""; dtostrf(weightTotal, 5, 1, buff); response += buff; response += "g&"; dtostrf(CG_length, 5, 1, buff); response += buff; response += "mm&"; dtostrf(CG_trans, 5, 1, buff); response += buff; response += "mm&"; dtostrf(batVolt, 5, 2, buff); response += buff; response += "V"; server.send(200, "text/html", response); } // send raw values to client void getRawValue() { char buff[8]; String response = ""; dtostrf(weightLoadCell1, 5, 1, buff); response += buff; response += "g&"; dtostrf(weightLoadCell2, 5, 1, buff); response += buff; response += "g&"; dtostrf(weightLoadCell3, 5, 1, buff); response += buff; response += "g"; server.send(200, "text/html", response); } // send parameters to client void getParameter() { char buff[8]; String response = ""; float weightTotal_saved = 0; float CG_length_saved = 0; float CG_trans_saved = 0; StaticJsonBuffer jsonBuffer; //DynamicJsonBuffer jsonBuffer(JSONBUFFER_SIZE); if (SPIFFS.exists(MODEL_FILE)) { // read json file File f = SPIFFS.open(MODEL_FILE, "r"); JsonObject& root = jsonBuffer.parseObject(f); f.close(); // check if model exists if (root.success() && root.containsKey(curModelName)) { JsonObject& object = root[curModelName]; weightTotal_saved = object["wt"]; CG_length_saved = object["cg"]; CG_trans_saved = object["cglr"]; } } // parameter list response += nLoadcells; response += "&"; response += distanceX1; response += "&"; response += distanceX2; response += "&"; response += distanceX3; response += "&"; response += refWeight; response += "&"; response += refCG; response += "&"; response += calFactorLoadcell1; response += "&"; response += calFactorLoadcell2; response += "&"; response += calFactorLoadcell3; response += "&"; response += resistorR1; response += "&"; response += resistorR2; response += "&"; if (enableBatVolt) { response += "ON"; } else { response += "OFF"; } response += "&"; response += ssid_STA; response += "&"; response += password_STA; response += "&"; response += ssid_AP; response += "&"; response += password_AP; response += "&"; response += curModelName; response += "&"; dtostrf(weightTotal_saved, 5, 1, buff); response += buff; response += "g&"; dtostrf(CG_length_saved, 5, 1, buff); response += buff; response += "mm&"; dtostrf(CG_trans_saved, 5, 1, buff); response += buff; response += "mm"; server.send(200, "text/html", response); } // send available WiFi networks to client void getWiFiNetworks() { String response = ""; int n = WiFi.scanNetworks(); if (n > 0) { for (int i = 0; i < n; ++i) { response += WiFi.SSID(i); if (i < n - 1) response += "&"; } } server.send(200, "text/html", response); } // save parameters void saveParameter() { if (server.hasArg("nLoadcells")) nLoadcells = server.arg("nLoadcells").toFloat(); if (server.hasArg("distanceX1")) distanceX1 = server.arg("distanceX1").toFloat(); if (server.hasArg("distanceX2")) distanceX2 = server.arg("distanceX2").toFloat(); if (server.hasArg("distanceX3")) distanceX3 = server.arg("distanceX3").toFloat(); if (server.hasArg("refWeight")) refWeight = server.arg("refWeight").toFloat(); if (server.hasArg("refCG")) refCG = server.arg("refCG").toFloat(); if (server.hasArg("calFactorLoadcell1")) calFactorLoadcell1 = server.arg("calFactorLoadcell1").toFloat(); if (server.hasArg("calFactorLoadcell2")) calFactorLoadcell2 = server.arg("calFactorLoadcell2").toFloat(); if (server.hasArg("calFactorLoadcell3")) calFactorLoadcell3 = server.arg("calFactorLoadcell3").toFloat(); if (server.hasArg("resistorR1")) resistorR1 = server.arg("resistorR1").toFloat(); if (server.hasArg("resistorR2")) resistorR2 = server.arg("resistorR2").toFloat(); if (server.hasArg("enableBatVolt")) { if (server.arg("enableBatVolt") == "ON") { enableBatVolt = true; } else { enableBatVolt = false; } } if (server.hasArg("ssid_STA")) server.arg("ssid_STA").toCharArray(ssid_STA, MAX_SSID_PW_LENGHT + 1); if (server.hasArg("password_STA")) server.arg("password_STA").toCharArray(password_STA, MAX_SSID_PW_LENGHT + 1); if (server.hasArg("ssid_AP")) server.arg("ssid_AP").toCharArray(ssid_AP, MAX_SSID_PW_LENGHT + 1); if (server.hasArg("password_AP")) server.arg("password_AP").toCharArray(password_AP, MAX_SSID_PW_LENGHT + 1); EEPROM.put(P_NUMBER_LOADCELLS, nLoadcells); EEPROM.put(P_DISTANCE_X1, distanceX1); EEPROM.put(P_DISTANCE_X2, distanceX2); EEPROM.put(P_DISTANCE_X3, distanceX3); EEPROM.put(P_REF_WEIGHT, refWeight); EEPROM.put(P_REF_CG, refCG); saveCalFactor1(); saveCalFactor2(); saveCalFactor3(); EEPROM.put(P_RESISTOR_R1, resistorR1); EEPROM.put(P_RESISTOR_R2, resistorR2); EEPROM.put(P_ENABLE_BATVOLT, enableBatVolt); EEPROM.put(P_SSID_STA, ssid_STA); EEPROM.put(P_PASSWORD_STA, password_STA); EEPROM.put(P_SSID_AP, ssid_AP); EEPROM.put(P_PASSWORD_AP, password_AP); EEPROM.commit(); // save current model to json saveModelJson(curModelName); server.send(200, "text/plain", "saved"); } // calibrate cg scale void autoCalibrate() { while (!runAutoCalibrate()); server.send(200, "text/plain", "parameters saved"); } // tare cg scale void runTare() { LoadCell_1.tare(); LoadCell_2.tare(); if (nLoadcells == 3) { LoadCell_3.tare(); } if (!getLoadcellError()) { server.send(200, "text/plain", "tare completed"); return; } server.send(404, "text/plain", "404: tare failed !"); } // save new model void saveModel() { if (server.hasArg("modelname")) { if (saveModelJson(server.arg("modelname"))) { server.send(200, "text/plain", "saved"); return; } } server.send(404, "text/plain", "404: Save model failed !"); } // open model void openModel() { if (server.hasArg("modelname")) { if (openModelJson(server.arg("modelname"))) { server.send(200, "text/plain", "opened"); return; } } server.send(404, "text/plain", "404: Open model failed !"); } // delete model void deleteModel() { if (server.hasArg("modelname")) { if (deleteModelJson(server.arg("modelname"))) { server.send(200, "text/plain", "deleted"); return; } } server.send(404, "text/plain", "404: Delete model failed !"); } // convert the file extension to the MIME type String getContentType(String filename) { if (filename.endsWith(".html")) return "text/html"; else if (filename.endsWith(".png")) return "text/css"; else if (filename.endsWith(".css")) return "text/css"; else if (filename.endsWith(".js")) return "application/javascript"; else if (filename.endsWith(".map")) return "application/json"; else if (filename.endsWith(".ico")) return "image/x-icon"; else if (filename.endsWith(".gz")) return "application/x-gzip"; return "text/plain"; } // send file to the client (if it exists) bool handleFileRead(String path) { // If a folder is requested, send the index file if (path.endsWith("/")) path += "index.html"; String contentType = getContentType(path); String pathWithGz = path + ".gz"; // If the file exists, either as a compressed archive, or normal if (SPIFFS.exists(pathWithGz) || SPIFFS.exists(path)) { if (SPIFFS.exists(pathWithGz)) path += ".gz"; File file = SPIFFS.open(path, "r"); size_t sent = server.streamFile(file, contentType); file.close(); return true; } return false; } // upload a new file to the SPIFFS void handleFileUpload() { HTTPUpload& upload = server.upload(); if (upload.status == UPLOAD_FILE_START) { String filename = upload.filename; if (!filename.startsWith("/")) filename = "/" + filename; if (filename != MODEL_FILE ) server.send(500, "text/plain", "wrong file !"); // Open the file for writing in SPIFFS (create if it doesn't exist) fsUploadFile = SPIFFS.open(filename, "w"); filename = String(); } else if (upload.status == UPLOAD_FILE_WRITE) { // Write the received bytes to the file fsUploadFile.write(upload.buf, upload.currentSize); } else if (upload.status == UPLOAD_FILE_END) { // If the file was successfully created if (fsUploadFile) { fsUploadFile.close(); // Redirect the client to the success page server.sendHeader("Location", "/models.html"); server.send(303); } else { server.send(500, "text/plain", "500: couldn't create file"); } } } // save model to json file bool saveModelJson(String modelName) { if (modelName.length() > MAX_MODELNAME_LENGHT) { return false; } StaticJsonBuffer jsonBuffer; //DynamicJsonBuffer jsonBuffer(JSONBUFFER_SIZE); if (SPIFFS.exists(MODEL_FILE)) { // read json file File f = SPIFFS.open(MODEL_FILE, "r"); JsonObject& root = jsonBuffer.parseObject(f); f.close(); if (!root.success()) { return false; } // check if model exists if (root.containsKey(modelName)) { writeModelData(root[modelName]); } else { // otherwise create new writeModelData(root.createNestedObject(modelName)); } // write to file if (root.success()) { f = SPIFFS.open(MODEL_FILE, "w"); root.printTo(f); f.close(); } else { return false; } } else { // creat new json JsonObject& root = jsonBuffer.createObject(); writeModelData(root.createNestedObject(modelName)); // write to file if (root.success()) { File f = SPIFFS.open(MODEL_FILE, "w"); root.printTo(f); f.close(); } else { return false; } } return true; } // read model data from json file bool openModelJson(String modelName) { StaticJsonBuffer jsonBuffer; //DynamicJsonBuffer jsonBuffer(JSONBUFFER_SIZE); if (SPIFFS.exists(MODEL_FILE)) { // read json file File f = SPIFFS.open(MODEL_FILE, "r"); JsonObject& root = jsonBuffer.parseObject(f); f.close(); if (!root.success()) { return false; } // check if model exists if (root.containsKey(modelName)) { JsonObject& object = root[modelName]; // load parameters from model distanceX1 = object["x1"]; distanceX2 = object["x2"]; distanceX3 = object["x3"]; } else { return false; } // save current model name to eeprom modelName.toCharArray(curModelName, MAX_MODELNAME_LENGHT + 1); EEPROM.put(P_MODELNAME, curModelName); EEPROM.commit(); return true; } return false; } // delete model from json file bool deleteModelJson(String modelName) { StaticJsonBuffer jsonBuffer; //DynamicJsonBuffer jsonBuffer(JSONBUFFER_SIZE); if (SPIFFS.exists(MODEL_FILE)) { // read json file File f = SPIFFS.open(MODEL_FILE, "r"); JsonObject& root = jsonBuffer.parseObject(f); f.close(); if (!root.success()) { return false; } // check if model exists if (root.containsKey(modelName)) { root.remove(modelName); } else { return false; } // if no models in json, kill it if (root.size() == 0) { SPIFFS.remove(MODEL_FILE); } else { // write to file if (root.success()) { File f = SPIFFS.open(MODEL_FILE, "w"); root.printTo(f); f.close(); } else { return false; } } return true; } return false; } void writeModelData(JsonObject& object) { object["wt"] = weightTotal; object["cg"] = CG_length; object["cglr"] = CG_trans; object["x1"] = distanceX1; object["x2"] = distanceX2; object["x3"] = distanceX3; } // convert time to string char * TimeToString(unsigned long t) { static char str[13]; int h = t / 3600000; t = t % 3600000; int m = t / 60000; t = t % 60000; int s = t / 1000; int ms = t - (s * 1000); sprintf(str, "%02ld:%02d:%02d.%03d", h, m, s, ms); return str; } #endif