CG_scale/CG_scale.ino
nightflyer88 8106b0c1c0 V1.0
2019-01-12 19:20:28 +01:00

646 lines
21 KiB
C++

/*
------------------------------------------------------------------
CG scale
(c) 2019 by M. Lehmann
------------------------------------------------------------------
*/
#define CGSCALE_VERSION "1.0"
/*
******************************************************************
history:
V1.0 beta first release
******************************************************************
Software License Agreement (BSD License)
Copyright (c) 2019, Michael Lehmann
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Required libraries, can be installed from the library manager
#include <HX711_ADC.h> // library for the HX711 24-bit ADC for weight scales (https://github.com/olkal/HX711_ADC)
#include <U8g2lib.h> // Universal 8bit Graphics Library (https://github.com/olikraus/u8g2/)
// built-in libraries
#include <EEPROM.h>
#include <Wire.h>
// Settings in separate file
#include "settings.h"
// HX711 constructor (dout pin, sck pint):
HX711_ADC LoadCell_1(PIN_LOADCELL1_DOUT, PIN_LOADCELL1_PD_SCK);
HX711_ADC LoadCell_2(PIN_LOADCELL2_DOUT, PIN_LOADCELL2_PD_SCK);
HX711_ADC LoadCell_3(PIN_LOADCELL3_DOUT, PIN_LOADCELL3_PD_SCK);
// serial menu
enum
{
MENU_HOME,
MENU_LOADCELLS,
MENU_DISTANCE_X1,
MENU_DISTANCE_X2,
MENU_DISTANCE_X3,
MENU_REF_WEIGHT,
MENU_REF_CG,
MENU_AUTO_CALIBRATE,
MENU_LOADCELL1_CALIBRATION_FACTOR,
MENU_LOADCELL2_CALIBRATION_FACTOR,
MENU_LOADCELL3_CALIBRATION_FACTOR,
MENU_BATTERY_MEASUREMENT,
MENU_SHOW_ACTUAL,
MENU_RESET_DEFAULT
};
// EEprom parameter addresses
enum
{
P_NUMBER_LOADCELLS = 1,
P_DISTANCE_X1 = 2,
P_DISTANCE_X2 = P_DISTANCE_X1 + sizeof(float),
P_DISTANCE_X3 = P_DISTANCE_X2 + sizeof(float),
P_LOADCELL1_CALIBRATION_FACTOR = P_DISTANCE_X3 + sizeof(float),
P_LOADCELL2_CALIBRATION_FACTOR = P_LOADCELL1_CALIBRATION_FACTOR + sizeof(float),
P_LOADCELL3_CALIBRATION_FACTOR = P_LOADCELL2_CALIBRATION_FACTOR + sizeof(float),
P_ENABLE_BATVOLT = P_LOADCELL3_CALIBRATION_FACTOR + sizeof(float),
P_REF_WEIGHT = P_ENABLE_BATVOLT + sizeof(float),
P_REF_CG = P_REF_WEIGHT + sizeof(float)
};
// battery image 12x6
static const unsigned char batteryImage[] U8X8_PROGMEM = {
0xfc, 0xff, 0x07, 0xf8, 0x01, 0xf8, 0x01, 0xf8, 0x07, 0xf8, 0xfc, 0xff
};
// weight image 18x18
static const unsigned char weightImage[] U8X8_PROGMEM = {
0x00, 0x00, 0xfc, 0x00, 0x03, 0xfc, 0x80, 0x04, 0xfc, 0x80, 0x04, 0xfc,
0x80, 0x07, 0xfc, 0xf8, 0x7f, 0xfc, 0x08, 0x40, 0xfc, 0x08, 0x40, 0xfc,
0x08, 0x47, 0xfc, 0x84, 0x84, 0xfc, 0x84, 0x84, 0xfc, 0x04, 0x87, 0xfc,
0x04, 0x84, 0xfc, 0x02, 0x03, 0xfd, 0x02, 0x00, 0xfd, 0x02, 0x00, 0xfd,
0xfe, 0xff, 0xfd, 0x00, 0x00, 0xfc
};
// CG image 18x18
static const unsigned char CGImage[] U8X8_PROGMEM = {
0x00, 0x02, 0xfc, 0xc0, 0x1f, 0xfc, 0x30, 0x7e, 0xfc, 0x08, 0xfe, 0xfc,
0x04, 0xfe, 0xfc, 0x04, 0xfe, 0xfd, 0x02, 0xfe, 0xfd, 0x02, 0xfe, 0xfd,
0x02, 0xfe, 0xff, 0xff, 0x01, 0xfd, 0xfe, 0x01, 0xfd, 0xfe, 0x01, 0xfd,
0xfe, 0x81, 0xfc, 0xfc, 0x81, 0xfc, 0xfc, 0x41, 0xfc, 0xf8, 0x31, 0xfc,
0xe0, 0x0f, 0xfc, 0x00, 0x01, 0xfc
};
// CG transverse axis image 18x18
static const unsigned char CGtransImage[] U8X8_PROGMEM = {
0x00, 0x00, 0xfc, 0x00, 0x00, 0xfc, 0x00, 0x00, 0xfc, 0x04, 0x70, 0xfc,
0x04, 0x90, 0xfc, 0x04, 0x90, 0xfc, 0x04, 0x70, 0xfc, 0x04, 0x50, 0xfc,
0x04, 0x90, 0xfc, 0x3c, 0x90, 0xfc, 0x00, 0x00, 0xfc, 0x00, 0x00, 0xfc,
0x08, 0x40, 0xfc, 0x04, 0x80, 0xfc, 0x7e, 0xf8, 0xfd, 0x04, 0x80, 0xfc,
0x08, 0x40, 0xfc, 0x00, 0x00, 0xfc
};
// set default text
static const String PROGMEM newValueText = "Set new value:";
// load default values
uint8_t nLoadcells = NUMBER_LOADCELLS;
float distanceX1 = DISTANCE_X1;
float distanceX2 = DISTANCE_X2;
float distanceX3 = DISTANCE_X3;
float calFactorLoadcell1 = LOADCELL1_CALIBRATION_FACTOR;
float calFactorLoadcell2 = LOADCELL2_CALIBRATION_FACTOR;
float calFactorLoadcell3 = LOADCELL3_CALIBRATION_FACTOR;
bool enableBatVolt = ENABLE_VOLTAGE;
float refWeight = REF_WEIGHT;
float refCG = REF_CG;
// declare variables
float weightLoadCell1 = 0;
float weightLoadCell2 = 0;
float weightLoadCell3 = 0;
float lastWeightLoadCell1 = 0;
float lastWeightLoadCell2 = 0;
float lastWeightLoadCell3 = 0;
unsigned long lastTimeMenu = 0;
unsigned long lastTimeLoadcell = 0;
bool displayInit = false;
bool updateMenu = true;
int menuPage = 0;
// Restart CPU
void(* resetCPU) (void) = 0;
// save calibration factors
void saveCalFactor1() {
LoadCell_1.setCalFactor(calFactorLoadcell1);
EEPROM.put(P_LOADCELL1_CALIBRATION_FACTOR, calFactorLoadcell1);
}
void saveCalFactor2() {
LoadCell_2.setCalFactor(calFactorLoadcell2);
EEPROM.put(P_LOADCELL2_CALIBRATION_FACTOR, calFactorLoadcell2);
}
void saveCalFactor3() {
LoadCell_3.setCalFactor(calFactorLoadcell3);
EEPROM.put(P_LOADCELL3_CALIBRATION_FACTOR, calFactorLoadcell3);
}
void setup() {
// init OLED display
oledDisplay.begin();
oledDisplay.firstPage();
do {
oledDisplay.drawXBMP(20, 12, 18, 18, CGImage);
oledDisplay.setFont(u8g2_font_helvR12_tr);
oledDisplay.setCursor(45, 28);
oledDisplay.print(F("CG scale"));
oledDisplay.setFont(u8g2_font_5x7_tr);
oledDisplay.setCursor(35, 55);
oledDisplay.print(F("Version: "));
oledDisplay.print(CGSCALE_VERSION);
oledDisplay.setCursor(20, 64);
oledDisplay.print(F("(c) 2019 M. Lehmann"));
} while ( oledDisplay.nextPage() );
// read settings from eeprom
if (EEPROM.read(P_NUMBER_LOADCELLS) != 0xFF) {
nLoadcells = EEPROM.read(P_NUMBER_LOADCELLS);
}
if (EEPROM.read(P_DISTANCE_X1) != 0xFF) {
EEPROM.get(P_DISTANCE_X1, distanceX1);
}
if (EEPROM.read(P_DISTANCE_X2) != 0xFF) {
EEPROM.get(P_DISTANCE_X2, distanceX2);
}
if (EEPROM.read(P_DISTANCE_X3) != 0xFF) {
EEPROM.get(P_DISTANCE_X3, distanceX3);
}
if (EEPROM.read(P_LOADCELL1_CALIBRATION_FACTOR) != 0xFF) {
EEPROM.get(P_LOADCELL1_CALIBRATION_FACTOR, calFactorLoadcell1);
}
if (EEPROM.read(P_LOADCELL2_CALIBRATION_FACTOR) != 0xFF) {
EEPROM.get(P_LOADCELL2_CALIBRATION_FACTOR, calFactorLoadcell2);
}
if (EEPROM.read(P_LOADCELL3_CALIBRATION_FACTOR) != 0xFF) {
EEPROM.get(P_LOADCELL3_CALIBRATION_FACTOR, calFactorLoadcell3);
}
if (EEPROM.read(P_ENABLE_BATVOLT) != 0xFF) {
EEPROM.get(P_ENABLE_BATVOLT, enableBatVolt);
}
if (EEPROM.read(P_REF_WEIGHT) != 0xFF) {
EEPROM.get(P_REF_WEIGHT, refWeight);
}
if (EEPROM.read(P_REF_CG) != 0xFF) {
EEPROM.get(P_REF_CG, refCG);
}
// init Loadcells
LoadCell_1.begin();
LoadCell_2.begin();
LoadCell_3.begin();
// tare
while (!LoadCell_1.startMultiple(STABILISINGTIME) && !LoadCell_2.startMultiple(STABILISINGTIME) && !LoadCell_3.startMultiple(STABILISINGTIME)) {
}
// set calibration factor
LoadCell_1.setCalFactor(calFactorLoadcell1);
LoadCell_2.setCalFactor(calFactorLoadcell2);
LoadCell_3.setCalFactor(calFactorLoadcell3);
// stabilize scale values
for (int i = 0; i <= 5; i++) {
LoadCell_1.update();
LoadCell_2.update();
LoadCell_3.update();
delay(200);
}
// init serial
Serial.begin(9600);
}
void loop() {
LoadCell_1.update();
LoadCell_2.update();
LoadCell_3.update();
// update loadcell values
if ((millis() - lastTimeLoadcell) > UPDATE_INTERVAL_LOADCELL) {
lastTimeLoadcell = millis();
// get Loadcell weights
weightLoadCell1 = LoadCell_1.getData();
weightLoadCell2 = LoadCell_2.getData();
if (nLoadcells > 2) {
weightLoadCell3 = LoadCell_3.getData();
}
// IIR filter
weightLoadCell1 = weightLoadCell1 + SMOOTHING_LOADCELL1 * (lastWeightLoadCell1 - weightLoadCell1);
lastWeightLoadCell1 = weightLoadCell1;
weightLoadCell2 = weightLoadCell2 + SMOOTHING_LOADCELL2 * (lastWeightLoadCell2 - weightLoadCell2);
lastWeightLoadCell2 = weightLoadCell2;
weightLoadCell3 = weightLoadCell3 + SMOOTHING_LOADCELL3 * (lastWeightLoadCell3 - weightLoadCell3);
lastWeightLoadCell3 = weightLoadCell3;
}
// update display and serial menu
if ((millis() - lastTimeMenu) > UPDATE_INTERVAL_OLED_MENU) {
lastTimeMenu = millis();
float weightTotal;
float CG_length = 0;
float CG_trans = 0;
float batVolt = 0;
// total model weight
weightTotal = weightLoadCell1 + weightLoadCell2 + weightLoadCell3;
if (weightTotal < MINIMAL_TOTAL_WEIGHT && weightTotal > MINIMAL_TOTAL_WEIGHT * -1) {
weightTotal = 0;
}
if (weightTotal > MINIMAL_CG_WEIGHT) {
// CG longitudinal axis
CG_length = ((weightLoadCell2 * distanceX2) / weightTotal) + distanceX1;
// CG transverse axis
if (nLoadcells > 2) {
CG_trans = (distanceX3 / 2) - ((weightLoadCell1 * distanceX3) / (weightLoadCell1 + weightLoadCell3));
}
}
// read battery voltage
if (enableBatVolt) {
batVolt = (analogRead(VOLTAGE_PIN) / 1024.0) * V_REF * (float(RESISTOR_R1 + RESISTOR_R2) / RESISTOR_R2) / 1000.0;
}
// print to display
char buff[8];
int pos_weightTotal = 7;
int pos_CG_length = 28;
if (nLoadcells < 3) {
pos_weightTotal = 17;
pos_CG_length = 45;
if (!enableBatVolt) {
pos_weightTotal = 12;
pos_CG_length = 40;
}
}
oledDisplay.firstPage();
do {
// print battery
if (enableBatVolt) {
oledDisplay.drawXBMP(88, 1, 12, 6, batteryImage);
dtostrf(batVolt, 2, 2, buff);
oledDisplay.setFont(u8g2_font_5x7_tr);
oledDisplay.setCursor(123 - oledDisplay.getStrWidth(buff), 7);
oledDisplay.print(buff);
oledDisplay.print(F("V"));
}
// print total weight
oledDisplay.drawXBMP(2, pos_weightTotal, 18, 18, weightImage);
dtostrf(weightTotal, 5, 1, buff);
oledDisplay.setFont(u8g2_font_helvR12_tr);
oledDisplay.setCursor(93 - oledDisplay.getStrWidth(buff), pos_weightTotal + 17);
oledDisplay.print(buff);
oledDisplay.print(F(" g"));
// print CG longitudinal axis
oledDisplay.drawXBMP(2, pos_CG_length, 18, 18, CGImage);
dtostrf(CG_length, 5, 1, buff);
oledDisplay.setCursor(93 - oledDisplay.getStrWidth(buff), pos_CG_length + 16);
oledDisplay.print(buff);
oledDisplay.print(F(" mm"));
// print CG transverse axis
if (nLoadcells > 2) {
oledDisplay.drawXBMP(2, 47, 18, 18, CGtransImage);
dtostrf(CG_trans, 5, 1, buff);
oledDisplay.setCursor(93 - oledDisplay.getStrWidth(buff), 64);
oledDisplay.print(buff);
oledDisplay.print(F(" mm"));
}
} while ( oledDisplay.nextPage() );
// serial connection
if (Serial) {
if (Serial.available() > 0) {
switch (menuPage)
{
case MENU_HOME:
menuPage = Serial.parseInt();
updateMenu = true;
break;
case MENU_LOADCELLS:
nLoadcells = Serial.parseInt();
EEPROM.put(P_NUMBER_LOADCELLS, nLoadcells);
menuPage = 0;
updateMenu = true;
break;
case MENU_DISTANCE_X1:
distanceX1 = Serial.parseFloat();
EEPROM.put(P_DISTANCE_X1, distanceX1);
menuPage = 0;
updateMenu = true;
break;
case MENU_DISTANCE_X2:
distanceX2 = Serial.parseFloat();
EEPROM.put(P_DISTANCE_X2, distanceX2);
menuPage = 0;
updateMenu = true;
break;
case MENU_DISTANCE_X3:
distanceX3 = Serial.parseFloat();
EEPROM.put(P_DISTANCE_X3, distanceX3);
menuPage = 0;
updateMenu = true;
break;
case MENU_REF_WEIGHT:
refWeight = Serial.parseFloat();
EEPROM.put(P_REF_WEIGHT, refWeight);
menuPage = 0;
updateMenu = true;
break;
case MENU_REF_CG:
refCG = Serial.parseFloat();
EEPROM.put(P_REF_CG, refCG);
menuPage = 0;
updateMenu = true;
break;
case MENU_AUTO_CALIBRATE:
if (Serial.read() == 'J') {
Serial.print(F("Autocalibration is running"));
for (int i = 0; i <= 20; i++) {
Serial.print(F("."));
delay(100);
}
// calculate weight
float toWeightLoadCell2 = ((refCG - distanceX1) * refWeight) / distanceX2;
float toWeightLoadCell1 = refWeight - toWeightLoadCell2;
float toWeightLoadCell3 = 0;
if (nLoadcells > 2) {
toWeightLoadCell1 = toWeightLoadCell1 / 2;
toWeightLoadCell3 = toWeightLoadCell1;
}
// calculate calibration factors
calFactorLoadcell1 = calFactorLoadcell1 / (toWeightLoadCell1 / weightLoadCell1);
calFactorLoadcell2 = calFactorLoadcell2 / (toWeightLoadCell2 / weightLoadCell2);
if (nLoadcells > 2) {
calFactorLoadcell3 = calFactorLoadcell3 / (toWeightLoadCell3 / weightLoadCell3);
}
saveCalFactor1();
saveCalFactor2();
saveCalFactor3();
// finish
Serial.println(F("done"));
menuPage = 0;
updateMenu = true;
}
break;
case MENU_LOADCELL1_CALIBRATION_FACTOR:
calFactorLoadcell1 = Serial.parseFloat();
saveCalFactor1();
menuPage = 0;
updateMenu = true;
break;
case MENU_LOADCELL2_CALIBRATION_FACTOR:
calFactorLoadcell2 = Serial.parseFloat();
saveCalFactor2();
menuPage = 0;
updateMenu = true;
break;
case MENU_LOADCELL3_CALIBRATION_FACTOR:
calFactorLoadcell3 = Serial.parseFloat();
saveCalFactor3();
menuPage = 0;
updateMenu = true;
break;
case MENU_BATTERY_MEASUREMENT:
if (Serial.read() == 'J') {
enableBatVolt = true;
} else {
enableBatVolt = false;
}
EEPROM.put(P_ENABLE_BATVOLT, enableBatVolt);
menuPage = 0;
updateMenu = true;
break;
case MENU_SHOW_ACTUAL:
Serial.readString();
menuPage = 0;
updateMenu = true;
break;
case MENU_RESET_DEFAULT:
//chr = Serial.read();
if (Serial.read() == 'J') {
// reset eeprom
for (int i = 0; i < 100; i++) {
EEPROM.write(i, 0xFF);
}
Serial.end();
resetCPU();
}
menuPage = 0;
updateMenu = true;
break;
}
Serial.readString();
}
if (!updateMenu)
return;
switch (menuPage)
{
case MENU_HOME:
Serial.print(F("\n\n********************************************\nCG scale by M.Lehmann - V"));
Serial.print(CGSCALE_VERSION);
Serial.print(F("\n\n1 - Set number of load cells ("));
Serial.print(nLoadcells);
Serial.print(F(")\n2 - Set distance X1 ("));
Serial.print(distanceX1);
Serial.print(F("mm)\n3 - Set distance X2 ("));
Serial.print(distanceX2);
Serial.print(F("mm)\n4 - Set distance X3 ("));
Serial.print(distanceX3);
Serial.print(F("mm)\n5 - Set reference weight ("));
Serial.print(refWeight);
Serial.print(F("g)\n6 - Set reference CG ("));
Serial.print(refCG);
Serial.print(F("mm)\n7 - Start autocalibration\n8 - Set calibration factor of load cell 1 ("));
Serial.print(calFactorLoadcell1);
Serial.print(F(")\n9 - Set calibration factor of load cell 2 ("));
Serial.print(calFactorLoadcell2);
Serial.print(F(")\n10 - Set calibration factor of load cell 3 ("));
Serial.print(calFactorLoadcell3);
Serial.print(F(")\n11 - Enable battery voltage measurement ("));
if (enableBatVolt) {
Serial.print(F("enabled)\n"));
} else {
Serial.print(F("disabled)\n"));
}
Serial.print(F("12 - Show actual values\n13 - Reset to factory defaults\n\n"));
Serial.print(F("Please choose the menu number:"));
updateMenu = false;
break;
case MENU_LOADCELLS:
Serial.print(F("\n\nNumber of load cells: "));
Serial.println(nLoadcells);
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_DISTANCE_X1:
Serial.print(F("\n\nDistance X1: "));
Serial.print(distanceX1);
Serial.print(F("mm\n"));
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_DISTANCE_X2:
Serial.print(F("\n\nDistance X2: "));
Serial.print(distanceX2);
Serial.print(F("mm\n"));
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_DISTANCE_X3:
Serial.print(F("\n\nDistance X3: "));
Serial.print(distanceX3);
Serial.print(F("mm\n"));
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_REF_WEIGHT:
Serial.print(F("\n\nReference weight: "));
Serial.print(refWeight);
Serial.print(F("g\n"));
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_REF_CG:
Serial.print(F("\n\nReference CG: "));
Serial.print(refCG);
Serial.print(F("mm\n"));
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_AUTO_CALIBRATE:
Serial.print(F("\n\nPlease put the reference weight on the scale.\nStart auto calibration (J/N)?\n"));
updateMenu = false;
break;
case MENU_LOADCELL1_CALIBRATION_FACTOR:
Serial.print(F("\n\nCalibration factor of load cell 1: "));
Serial.println(calFactorLoadcell1);
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_LOADCELL2_CALIBRATION_FACTOR:
Serial.print(F("\n\nCalibration factor of load cell 2: "));
Serial.println(calFactorLoadcell2);
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_LOADCELL3_CALIBRATION_FACTOR:
Serial.print(F("\n\nCalibration factor of load cell 3: "));
Serial.println(calFactorLoadcell3);
Serial.print(newValueText);
updateMenu = false;
break;
case MENU_BATTERY_MEASUREMENT:
Serial.print(F("\n\nEnable battery voltage measurement (J/N)?\n"));
updateMenu = false;
break;
case MENU_SHOW_ACTUAL:
Serial.print(F("Lc1: "));
Serial.print(weightLoadCell1);
Serial.print(F("g Lc2: "));
Serial.print(weightLoadCell2);
if (nLoadcells > 2) {
Serial.print(F("g Lc3: "));
Serial.print(weightLoadCell3);
}
Serial.print(F("g Total weight: "));
Serial.print(weightTotal);
Serial.print(F("g CG length: "));
Serial.print(CG_length);
if (nLoadcells > 2) {
Serial.print(F("mm CG trans: "));
Serial.print(CG_trans);
Serial.print(F("mm"));
}
if (enableBatVolt) {
Serial.print(F(" Battery:"));
Serial.print(batVolt);
Serial.print(F("V"));
}
Serial.println();
break;
case MENU_RESET_DEFAULT:
Serial.print(F("\n\nReset to factory defaults (J/N)?\n"));
updateMenu = false;
break;
}
} else {
updateMenu = true;
}
}
}